會員登入
|
加入會員
|
會員專區
|
購物車
|
自資出版
|
電子書城
|
客服中心
文學小說
商管創投
人文藝坊
勵志養生
進修學習
科學工程
家庭親子
玩樂天地
書名
出版社
作者
isbn
編號
英語會話
|
成交的秘密
|
霹靂影音寫真特典
|
App程式設計入門:iPhone、iPad(附光碟)
此作者無相關書籍
文學小說
文學
|
小說
商管創投
財經投資
|
行銷企管
人文藝坊
宗教、哲學
社會、人文、史地
藝術、美學
|
電影戲劇
勵志養生
醫療、保健
料理、生活百科
教育、心理、勵志
進修學習
電腦與網路
|
語言工具
雜誌、期刊
|
軍政、法律
參考、考試、教科用書
科學工程
科學、自然
|
工業、工程
家庭親子
家庭、親子、人際
青少年、童書
玩樂天地
旅遊、地圖
|
休閒娛樂
漫畫、插圖
|
限制級
集成式學習:Python 實踐!整合全部技術,打造最強模型
作者:
George Kyriakides、Konstantinos G. Margaritis
譯者:
張康寶
分類:
電腦與網路
/
程式語言
出版社:
旗標
出版日期:2022/2/10
ISBN:9789863126942
書籍編號:kk0545670
頁數:384
定價:
750
元
一般會員價:
95
折
712
元
特別會員價:
9
折
675
元
書價若有異動,以出版社實際定價為準
訂購後立即為您進貨
訂購後立即為您進貨:目前無庫存量,讀者下訂後,開始進入調書程序,一般天數約為2-10工作日(不含例假日)。
團購數最低為 15 本以上
評價數:
(請將滑鼠移至星星處進行評價)
目前平均評價:
文字連結
複製語法
集成式學習:Python 實踐!整合全部技術,打造最強模型
圖片連結
複製語法
分
享
•
-
內容簡介
作者介紹
書籍目錄
同類推薦
集成式學習:Python 實踐!整合全部技術,打造最強模型 內容簡介 別再傻傻只選一個模型 訓練很多模型,卻不知道應該選哪一個?沒有一個模型達標?每個模型都有其優缺點,無法取捨? 小朋友才做選擇,大人全都要!你該試試集成式學習! 集成式學習是使用 2 種或更多的機器學習演算法,來組合出預測能力更好的模型。DeepMind 已經使用集成式學習來組合多個神經網路,控制 Google 資料中心的運作效能;集成式學習技術也在 Kaggle 平台上,席捲了各個競賽的第一名寶座。因此,集成式學習是建立出更具威力的模型,不可或缺的技術之一。 本書會介紹實務上常見的集成式學習演算法,如硬投票、軟投票、堆疊法、自助聚合法、適應提升法、梯度提升法、隨機森林、極端隨機樹等,並且使用熱門的 scikit-learn、Keras、OpenEnsembles、XGBoost 等 Python 函式庫來實作各種不同的集成式學習技術,建構出一個強大的模型。熟稔本書的內容後,不但可以精通集成式學習,在實際情境中面對問題時,亦能具備充分的專業知識判斷適用的集成式學習方法,並成功實作它們。 書中採用「做中學」的方式,讓你不僅可以快速掌握理論基礎,也能了解各種集成式學習技術的實作,再加上運用真實世界中的資料集,你將能夠建立出更佳的機器學習模型,以解決各種問題,包含迴歸、分類、分群。 現在翻開本書,讓我們一起進入集成式學習的世界,整合你所會的全部技術,打造最強大的模型。 本書特色: ● 繁體中文第 1 本集成式學習專書,告訴你不要再傻傻地只選一個模型 ● 完整介紹集成式學習中常見的演算法,包含極端隨機樹、堆疊法、自助聚合法、提升法等 ● 一書掌握實作集成式學習的必備套件,如 Scikit-Learn、OpenEnsembles、XGBoost 等 ● 用 Python 刻演算法給你看,接著告訴你怎麼用套件。讓你不只會做,還懂為什麼這麼做 ● 以 5 個實務案例來展示集成式學習的威力 ● 本書由施威銘研究室監修,內容易讀易懂,並加入大量「小編補充」補充必要知識 ● 本書 Python 範例程式免費下載
作者簡介 George Kyriakides 希臘馬其頓大學計算機方法與應用碩士畢業,目前為研究員。研究領域包含分散式神經網路架構、自動化生成及最佳化預測模型於影像辨識、時間序列資料、以及商業應用等。 Konstantinos G. Margaritis 英國羅浮堡大學應用資訊工程博士畢業,目前為希臘馬其頓大學應用資訊系教授。資訊工程的教學經驗長達 30 年,研究領域為平行及分散式智慧運算與機器學習。
目錄 目錄 前言 第一篇 機器學習基礎知識 第 1 章 機器學習的概念 1.1 資料集 1.2 監督式學習與非監督式學習 13 效能指標(Performance Measures) 1.4 模型驗證(Validation) 1.5 機器學習演算法 1.6 小結 第 2 章 初探集成式學習(Ensemble Learning) 2.1 何謂偏誤與變異 2.2 評估偏誤與變異 2.3 集成式學習(Ensemble Learning) 2.4 小結 第二篇 非生成式演算法 第 3 章 投票法(Voting) 3.1 多數決投票 3.2 使用 Python 實作硬投票 3.3 使用 Python 實作軟投票 3.4 小編補充:加權軟投票 3.5 小結 第 4 章 堆疊法(Stacking) 4.1 超學習(Meta-learning) 4.2 超學習器的訓練資料集 4.3 超學習器的測試資料集 4.4 選擇學習器(Learner) 4.5 使用堆疊法處理迴歸問題 4.6 使用堆疊法處理分類問題 4.7 建立堆疊的函式 4.8 小編補充:堆疊的其他技巧 4.9 小結 第三篇 生成式演算法 第 5 章 自助聚合法(Bootstrap Aggregation) 5.1 自助抽樣法 5.2 自助聚合法的原理 5.3 使用 Python 實作自助聚合法的完整機制 5.4 平行化(Parallelize)自助聚合法 5.5 使用 scikit-learn 提供的自助聚合法處理分類問題 5.6 使用 scikit-learn 提供的自助聚合法處理迴歸問題 5.7 小結 第 6 章 提升法(Boosting) 6.1 適應提升(Adaptive Boosting, AdaBoost) 6.2 使用 Python 實作適應提升的完整機制 6.3 使用 scikit-learn 提供的適應提升處理分類問題 6.4 使用 scikit-learn 提供的適應提升處理迴歸問題 6.5 梯度提升(Gradient Boosting) 6.6 使用 Python 實作梯度提升的完整機制 6.7 使用 scikit-learn 提供的梯度提升處理迴歸問題 68 使用 scikit-learn 提供的梯度提升處理分類問題 6.9 使用 XGBoost 提供的梯度提升處理迴歸問題 610 使用 XGBoost 提供的梯度提升處理分類問題 6.11 小結 第 7 章 隨機森林(Random Forest) 7.1 建立隨機森林 7.2 使用 scikit-learn 提供的隨機森林處理分類問題 73 使用 scikit-learn 提供的隨機森林處理迴歸問題 7.4 使用 scikit-learn 提供的極端隨機樹處理分類問題 7.5 使用 scikit-learn 提供的極端隨機樹處理迴歸問題 7.6 小結 第四篇 分群 第 8 章 分群(Clustering) 8.1 分群演算法 8.2 使用 scikit-learning 提供的 K 平均法來處理分群問題 8.3 使用投票法集成非監督式學習的基學習器 8.4 使用 OpenEnsemble 集成非監督式學習的基學習器 8.5 使用圖閉合(Graph Closure)集成非監督式學習的基學習器 8.6 使用共現鏈(Co-occurrence Linkage)集成非監督式學習的基學習器 8.7 小結 第五篇 5 個實務案例 第 9 章 檢測詐騙交易 9.1 初探資料集 9.2 探索式資料分析 9.3 投票法 9.4 堆疊法 9.5 自助聚合法 9.6 適應提升法 9.7 梯度提升法 9.8 隨機森林 9.9 不同方法的分析比較 9.10 小結 第 10 章 預測比特幣價格 10.1 時間序列資料 10.2 比特幣資料分析 10.3 建立基準模型 10.4 計算 Sharpe 值 10.5 投票法 10.6 堆疊法 10.7 自助聚合法 10.8 提升法 10.9 隨機森林 10.10 小結 第 11 章 推特(Twitter)情感分析 11.1 情感分析工具 11.2 取得 Twitter 資料 11.3 建立模型 11.4 即時分類推文 11.5 小結 第 12 章 推薦電影 12.1 推薦系統 12.2 神經網路推薦系統 12.3 使用 Keras 實作使用點積的神經網路 12.4 使用 Keras 實作自行探索網路結構的神經網路 12.5 集成多個神經網路,建立推薦系統 12.6 小編補充:集成神經網路的參數 12.7 小結 第 13 章 世界幸福報告分群 13.1 世界幸福報告 13.2 使用原始特徵建立集成模型 13.3 使用正規化特徵建立集成模型 13.4 使用 t-分布隨機鄰居嵌入降維後特徵建立集成模型 13.5 觀察分群結果 13.6 小結 後記
AI 時代的 Sid
從零開始學Pytho
聰明提問AI的技巧與
輕鬆上手Power
你就是不寫測試才會沒
Grafana Ze
猴子也能懂的電腦對局
超實用AI技能工具箱
AI 最強調整術:使
BDD in Act
Q1:若我已報名付了1000元訂金,接下來我要做什麼? A:感謝您報名,後續相關事情及服務我們會以e-mail和電話跟您聯絡. 您也可以主動來信(andy@book4u.com.tw)詢問。謝謝! Q2:我本身並沒有產品和服務,也沒什麼實務上的經驗,那又能如何賺錢呢?這個課程真的有實際成效嗎? A:我們這個課程共有11項贈品,其中第2項贈品便是資訊產品創造藍圖,它將教您如何用最簡潔而快速的方法創出屬於您自己的資訊產品。一般的課程大多是教您如何捕魚,但多數的成功致富者,其成功的關鍵卻不是仰賴捕魚技術,而是仰賴借力之術,因為唯有借力才能無中生有!才能快速成長!也才能快速致富!本課程3天共有三套樣版,其中一套樣版便是教您打造在沒有任何商品與服務,也沒有任何資源的情況下,就能快速借力致富的樣版!本課程二位講師都是白手起家,對於沒有實務經驗的新手會格外用心,請放心。 Q3:請問贈品中魚池矩陣直效聯盟VVIP是什麼? A:這是一個強大的系統,而我們送的是體驗版,會提供你Email追客系統。國外有一種函授課程,亦即每幾天發一個課程給學員, 就是用EMAIL追客系統來實踐。EMAIL追客系統簡單的說就是今天有一個客戶在你的網站上購買產品或註冊,系統會自動回覆一封確認信,之後你可以自行設計發送內容和發信時間一次一對多發給客戶,而且每封信還會帶入客戶本身的姓名。讓客戶以為是我們專門為客戶所量身訂作的信件。所以Email追客系統可以讓你培養跟客戶的信任感,進而成交。 Q4:請問贈品中資訊產品創造藍圖是什麼? A:這是一位叫林星?老師的課程,課程售價是9800元,現在免費送給你。此課程包含: ● 何謂資訊型產品? ● 資訊型產品的種類大解析!以及如何組織你的資訊型產品賺錢? ● 如何找到你的利基市場? ● 為什麼錯的利基市場,再好的產品與行銷也很難有效! ● 29個國外已經證實能讓你賺到錢的利基市場! ● 如何確保你做出來的產品客戶會很想購買?以及實際可執行的步驟! ● 創造資訊型產品計劃書 ● 15個步驟建立你的資訊型產品事業 ● E-mail精準行銷的10個法則 ● 10個別人沒有告訴你的有效文案撰寫法則 Q5:請問贈品中自動財富系統 6片DVD是什麼? A:此6片DVD定價3200元。內容為《借力淘金!最吸利的鈔級魚池賺錢術》作者之一王紫杰所錄製的DVD,內容為有關網路行銷的知識和技巧,非常豐富且實用,免費送給您。
為了保障您的權益,新絲路網路書店所購買的商品均享有到貨七天的鑑賞期(含例假日)。退回之商品必須於鑑賞期內寄回(以郵戳或收執聯為憑),且商品必須是全新狀態與完整包裝(商品、附件、內外包裝、隨貨文件、贈品等),否則恕不接受退貨。